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Abstract

Previous work in interactive reinforcement learning considers human behavior di-
rectly in agent policy learning, but this requires estimating the distribution of hu-
man behavior over many samples to prevent bias. Our work shows that model-
based systems can avoid this problem by using small amounts of human data to
guide world-model learning rather than agent-policy learning. We show that this
approach learns faster and produces useful policies more reliably than prior state-
of-the-art. We evaluate our approach with expert human demonstrations in two
environments: PinPad5, a fully observable environment that prioritizes task com-
position, and MemoryMaze, a partially observable environment that prioritizes ex-
ploration and memory. We show an order of magnitude speed-up in learning and
reliability with only nine minutes of expert human demonstration data.

1 Introduction

Goals for agents in reinforcement learning (RL) can often easily be described by specific world state
conditions, but it can take a prohibitively long time for an agent to discover a task’s goal state, even
with exploration rewards. In this context, using guidance from a human teacher can substantially
speed learning. One commonly used method of incorporating human guidance is imitation learning.
Standard approaches to imitation learning shape an agent’s behavior either directly through its
policy or by modeling a human’s dense reward function. These approaches may include directly
incorporating demonstrations (Ross et al., 2011; Kelly et al., 2019; Spencer et al., 2020); learning to
distinguish expert-actions from policy-actions (Ho & Ermon, 2016; Rafailov et al., 2021); training
policies using human demonstrations as labels (Bain & Sammut, 1995; Torabi et al., 2018); learning
reward functions from scalar feedback (Knox & Stone, 2009; Warnell et al., 2018) or preferences
(Wirth et al., 2016; Bai et al., 2022); or learning to explore(Villasevil et al., 2023). These methods
speed up learning, but typically create models from human demonstrations with limited state-action
coverage, causing them to fall short when applied to real-world distributions. Estimating a real-world
state-action or reward distribution in an unbiased way requires more data than a single person can
reasonably be expected to provide. The goal of our work is to address this limitation by enabling
a single human to guide an agent to learn tasks on human-relevant timescales (e.g. from periodic
demonstrations within one work-week).

We build on recent works in model-based reinforcement learning (MBRL), which use a world model
to train an agent’s policy (Moerland et al., 2023). MBRL increases sample efficiency to enable
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long-horizon task learning with few human demonstrations. In this approach, the world model itself
can be taught about a task’s sparse reward without directly shaping an agent’s policy or reward
function. World models can learn from trajectories produced by any policy, so they can be guided
early in training by human demonstration data without significant modification. Intuitively, by never
explicitly considering the human state-visitation density or action-selection likelihood we prevent poor
modeling of human behavior. Furthermore, this approach avoids problems of distribution shift in
two ways. First, directly controlling the agent using its own observations and affordances avoids
shifts between the human and agent observation and action spaces. Second, avoiding updating the
agent’s policy or reward function directly from human demonstrations prevents problems caused
by insufficient coverage of the state-action space, which otherwise could result in a brittle agent
policy (Ross et al., 2011; Rajeswaran et al., 2017). Instead, the agent learns on-policy from the
world model without ever having to consider the human’s behavior distribution.

In this paper, we propose teaching the world model in MBRL as an effective form of Learning from
Demonstration (LfD). We demonstrate the effectiveness of this approach in two simulated environ-
ments with sparse reward: PinPad5, a long-horizon fully-observable image observation task requiring
a precisely composed series of states, and MemoryMaze, a partially observable image observation
task focused on memory and exploration. We build on DreamerV3 (Hafner et al., 2023), which
trains an actor-critic on-policy purely from the model’s imagined unrolls. Human demonstrations
inform the world model’s learning, which in turn guides the agent’s learning. Dreamer is particu-
larly well-suited to incorporate human demonstrations because of its state-of-the-art performance
on RL tasks, allowing us to more easily isolate the impact of human demonstrations. We show that
this approach substantially improves the speed and consistency of learning. With nine to eighteen
minutes of human intervention, we attain 90% of max reward four to six times faster and more
consistently than Dreamer or any baseline.

Overall, a focus on training world models rather than agent policies or reward functions from human
demonstrations opens promising new directions for research in human-in-the-loop learning. In this
paper, we show that this is effective in environments with sparse, positive rewards, but this approach
may also be helpful in understanding harmful or preferred states. In this way, the learning agent is
able to extract the most important information from human demonstrations while remaining robust
to noise and errors in those demonstrations.

2 Background

2.1 Learning from Demonstration and Interactive Imitation Learning

Interactive Imitation Learning (IIL) uses a human or pre-trained oracle to guide agent behavior
within the learning environment by offering corrections through provided feedback (Knox & Stone,
2009; Warnell et al., 2018), comparisons (Wirth et al., 2016; Bai et al., 2022), or demonstration (Ross
et al., 2011; Kelly et al., 2019; Spencer et al., 2020). IIL operates over a distribution induced by the
learner, rather than expert, which can improve sample efficiency by offering a natural and intuitive
teaching approach for non-experts, and reducing distributional mismatch / covariate shift(Celemin
et al., 2022).

Learning from Demonstration (LfD) is a form of Interactive Imitation Learning (IIL) that incor-
porates information from human demonstrations to speedup learning or customize agent behavior.
The resulting demonstrations can be treated as a dataset for supervised learning to teach an agent
a mapping from states to actions, as in Behavior Cloning (BC), or the basis for learning a reward
function, as in Inverse Reinforcement Learning (IRL). LfD is helpful when the intended behavior is
difficult to design for with either control code or a designed reward function (Ravichandar et al.,
2020). However, these methods have significant weaknesses. As a BC agent acts, its mistakes com-
pound quadratically with the time-horizon (Ross et al., 2011) due to distributional shift, and IRL
is an under-specified problem and may have difficulty generalizing from few demonstrations (Finn
et al., 2016; Arora & Doshi, 2021). These difficulties arise in part from estimating human behavior
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(a) PinPad5 (b) MemoryMaze 9x9
Figure 1: Training environments. (a) PinPad5: The agent must hit a specific 5-pad sequence in
order to attain sparse reward. The agent’s history accrues in the bottom left of the image (this
agent has stepped on three pads). The pad sequence is the same for every trial (b) MemoryMaze
9x9: a 3D randomized maze environment where an agent receives reward for stepping on the correct
hemisphere. The border of the observation indicates the target hemisphere color. Episodes last 1000
steps in both environments.

distributions. We avoid the problems of policy or reward shaping by providing demonstrations that
train the world model, rather than an agent.

2.2 Learning from World Models

World models learn a representation of the environment’s transition function T : S × a → S′, R, c
that maps the current state S and an action a ∈ A to the next state S′, the environmental reward
R, and (optionally) the likelihood that the episode will terminate c. World models allow RL agents
to generate synthetic rollouts to learn from a much larger more diverse set of experiences than might
be feasible in the real environment, increasing sample efficiency (Moerland et al., 2023). In addition,
MBRL can aid exploration by using representation loss as a proxy for state-transition familiarity,
and explainability by providing visualizable examples of future behavior. Model-based systems have
become more common as high fidelity world modelling has improved (Ha & Schmidhuber, 2018;
Kaiser et al., 2019; Hafner et al., 2019; Rafailov et al., 2021; Wu et al., 2023).

We base our system off of the Dreamer line of work (Hafner et al., 2019; 2022; 2023). Dreamer
uses a Recurrent State Space Machine (RSSM) which encodes observations x, and joins them with
deterministic recurrent state h to predict a stochastic z from past actions and embeddings. Dreamer
learns to remember salient features over multiple time-steps, but outputs Markovian states which
facilitate learning from reward signals. Dreamer trains an actor-critic agent that learns purely from
imagined world model trajectories, which are generated from previously observed states. We insert
human-interaction periods into the training-evaluation loop and let a human teleoperate an agent
towards a sparse reward. See appendix A for more detail on Dreamer’s world model and training.

2.3 LfD with Few Demonstrations

Recent years have seen progress in learning from small amounts of human demonstration data. These
methods demonstrate how effective small amounts of human demonstration can be on forming useful
embedded representations for model-free learning (Zhan et al., 2021), jointly training a world model
and policy quickly (Hansen et al., 2022a), and training adversarial discriminators from world model
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Algorithm 1 WMHD-Dreamer
Require: W, πhuman, πdream, πrandom, D

1: nhuman ← 0
2: D ← s, πrandom(s), s′, r for L steps
3: D ← s, πhuman(s), s′, r for L steps
4: for i = 1 . . . 100 do
5: train W, πdream on D
6: end for
7: while learning do
8: for j = 1 . . . L do
9: D ← s, πdream(s), s′, r

10: train W, πdream on D
11: end for
12: if nhuman < nexperiment_samples then
13: D ← s, πhuman(s), s′, r for L steps
14: nhuman ← nhuman + L
15: end if
16: end while

unrolls (Rafailov et al., 2021). These methods are effectively used for continuous control tasks, but
we push this research further by demonstrating its effectiveness on compositional tasks. Humans
generally know the steps involved in accomplishing a task, but often struggle with directly controlling
low-level agent behavior (Akgun et al., 2012).

3 Methodology

Our approach, World Model training from Human Demonstrations (WMHD), is based on DreamerV3
Hafner et al. (2023), which is composed of a world model consisting of an RSSM plus decoder heads
for expected reward, episode termination, and image observation, and an actor-critic agent. The
world model is trained on images from the environment, discrete actions and observed reward, while
the agent is trained on forward predicted world model unrolls starting from real world states sampled
from the replay buffer. See appendix A for more detail. We will distinguish our approach from pure
Dreamer as WMHD-Dreamer in this text.

In baseline Dreamer training, a random policy generates trajectories, the system pretrains on that
random data, and then the world model and agent are trained jointly to solve the task. WMHD-
Dreamer speeds up learning by adding human demonstrations periodically early in learning using
direct control / teleoperation. First, the expert human teleoperates the agent for one episode, then
the system pretrains for 100 steps on a uniformly sampled mix of trajectories from human data
and data produced by a random policy. The system then oscillates between dreamer agent control
with training steps, and human control without training steps. Once the target number of human
demonstrations have been collected (nexperiment_samples), the agent proceeds with training without
human intervention.

Algorithm 1 shows the training process with world model W , actor πdreamer, random policy πrandom,
human πhuman, and dataset D, for episodes of length L. nexperiment_samples was set to 1000, 3000,
or 6000, in order to evaluate the effect of varying amounts of data on performance (see figure 3).

The algorithm was validated using a PyTorch implementation of DreamerV3 based on NM512
(2024)’s implementation, modified to allow for human demonstrations to be collected periodically
within the training loop.
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Figure 2: Episodic reward in the PinPad5 environment for 3k and 6k human actions demonstrated
in the early stages of training vs. no human demonstrations. The shaded vertical region indicates
when human demonstrations occurred. Lines indicate the mean across all trials with one standard
deviation shaded (capped at 0 and max-reward). PPO, RS-PPO, and BC baselines never achieved
any reward, and so have been omitted. Demonstrations were taken for each of n trials.

4 Simulation Study

We demonstrate the benefit of incorporating human data into world model training in two simulated
environments. The first is a long-horizon task, PinPad5, where a pixel agent has to step on five
colored pads in the correct sequence. The agent starts in a random location and gets credit for
pressing a pad when they move onto any square of that pad, unless it was the last pad visited (a
pad cannot be activated twice in a row). The pad-visitation history is tracked on the bottom left
of the image observation (figure 1a), making PinPad5 a fully observable environment. PinPad5
takes discrete actions and returns 64x64 image observations, and has a relatively simple transition
functions that is easy to control, but requires long-horizon planning and precise execution to find
the sparse environment reward. PinPad5 is a compositional rather than a control task, because
the task’s challenge comes from visiting a long sequence of correctly ordered states rather than
maintaining continuous control of an agent.

We also evaluate our method in MemoryMaze 9x9 (Pasukonis et al., 2022), a 3D randomized maze
environment where an agent receives reward for stepping on the correct colored hemisphere. The
target hemisphere color is indicated by the border of the 64x64 image observation, and is randomly
selected once the previous target hemisphere is reached. This environment uses discrete-actions
and presents image observations from a first-person perspective, making it a partially observable
environment. It is designed to test long-term memory and exploration. In this environment, we
compare our approach to Dreamer and PPO baselines.

All human demonstrations are collected from human experts (authors) using a wired Xbox controller.
The expert is shown the environment’s 64x64 image state and uses the joystick to input a direction
that maps to a discrete environmental action. This process repeats for one thousand s, a, s′, r
transitions and takes between two and three minutes. The Dreamer agent then acts one thousand
environment steps (125 updates) and hands control back to the human. This process continues until
the target number of human transitions is collected. Each sample (seed) was trained for at least
four hundred thousand steps corresponding to fifty thousand updates on either an Intel i7-12700
CPU with a GeForce RTX 3060 GPU or an Intel i5-10600K CPU with a GeForce RTX 3080ti GPU
where Dreamer ran at approximately ninety-two updates per minute in PinPad5 and approximately
fifty-five updates per minute in MemoryMaze9x9. Hyperparameters were kept constant across all
experiments and can be found in appendix B. WMHD-Dreamer was trained with between nine and
eighteen minutes of human demonstration, corresponding to three thousand to six thousand actions.
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Algorithm Steps to 50/90 %Max R Trials 50/90 %Max R Avg/StDev R
PinPad5
WMHD-Dreamer 6.0e4/1.1e5 100%/73% 162.74 / 66.06
Dreamer 4.0e5/(n/a) 30%/0% 15.78 / 50.63
PPO, RS-PPO, BC n/a 0% 0 / n/a
MemoryMaze
WMHD-Dreamer 4.8e4 / 6.1e4 100% 5.86 / 4.58
Dreamer 2.0e5 / 2.7e5 100% 2.53 / 2.89
PPO n/a 0% 0.15 / 0.12
RS-PPO n/a 0% 0.14 / 0.12
BC n/a 0% 0 / n/a

Table 1: Results over 400k Environment Steps. The first column shows the average number of
steps an algorithm took to achieve either 50% or 90% of the maximum episodic reward. The
second column shows what percent of trials (seeds) achieved 50% or 90% of maximum reward
within 400k environment steps. The third column shows the average and standard deviation of
the environmental reward for all steps and trials. For MemoryMaze, we use the maximum reward
any baseline attained, which is roughly 25% of the reported mean maximum score after 100 million
environment steps (Pasukonis et al., 2022).

We select our training window to overlap with an eight-hour workday in order to demonstrate
learning at human timescales. Eight hours corresponds to 350k environment steps in PinPad5 and
225k environment steps in MemoryMaze on the consumer GPUs listed above. After testing with the
Dreamer baseline, this window was extended to 400k steps to include the point at which dreamer
starts to learn.

4.1 Baselines

We trained three baselines for PinPad5: PPO (Schulman et al., 2017b), PPO with a shaped reward
(RS-PPO), and BC with the same demonstrations that were used to train WMHD-Dreamer. PPO
with shaped reward received +0.2 for a correct pad in PinPad5 and a reward based on distance
from the target hemisphere in MemoryMaze. For BC baselines, we trained with cross-entropy loss
using a supervised learning model (see appendix 4) from 6000 s, a human demonstrations to predict
the correct action for a given state and then evaluated the model’s performance on the task. For
hyperparameter choices, see appendix B.

In PinPad5, none of these agents achieved the sparse reward over the training horizon of 400000
steps and so are omitted from figures 2, 3. This is consistent with prior results: (Hafner et al., 2023)
trained PPO for 30 million environment interactions without finding sparse reward in PinPad5.

5 Results

WMHD-Dreamer learned significantly faster and more consistently than Dreamer or any baseline.
The results are strongest for PinPad5 (figure 2). In this environment a relatively small amount
of human guidance leads to attaining 50% max environmental reward in 6.62 times fewer steps on
average than pure Dreamer (60463 vs. 400350), and attains 90% max reward in 109519 on average
while no baseline reaches 90% max reward. All ten WMHD-Dreamer trials achieve 50% of max
reward, while only three of ten plain Dreamer trials do. In addition, eight of eleven WMHD-Dreamer
trials attained 90% of the max reward, while plain Dreamer never reached 90% max reward within
the training window. Our PPO and BC baselines never reached the sparse reward. MemoryMaze
performed similarly (figure 4) attaining 50% of demonstrator’s max reward1 in 4.17 times fewer steps

1We use the maximum reward attained by any baseline, which was WMHD-Dreamer and reaches roughly 25% of
the reported mean maximum score after 100 million environment steps (Pasukonis et al., 2022).
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Figure 3: Episodic reward in the PinPad5 environment for differing amounts of human demonstration
vs. no human demonstrations. Lines indicate the mean across all trials with one standard deviation
shaded (capped at 0 and max-reward). Demonstrations were taken for each of n trials.

Figure 4: Episodic reward in the MemoryMaze9x9 environment for 3k and 6k human actions demon-
strated in the early stages of training vs. no human demonstrations. The shaded vertical region
starting at 0 steps indicates when human demonstrations occurred. Lines indicate the mean across
all trials with one standard deviation shaded (capped at 0). Demonstrations were taken for each of
n trials.

on average (48887 vs. 203759), and attaining 90% demonstrator’s max reward in 4.00 times fewer
steps on average (67405 vs. 269395). In this environment, all dreamer-based trials achieved 90% of
demonstrator’s max reward within the training window, while our PPO and BC baselines did not.

Figure 3 separates out PinPad5 trials by the amount of human demonstration data. We show results
for between three and eighteen minutes, corresponding to between 1k and 6k human actions. Any
human demonstration improves performance rapidly above pure Dreamer, but 3k and 6k demon-
strations show much tighter variance and consistent performance than 1k demonstrations. Models
with 6k demonstrations had an average reward of 169.83 and standard deviation of 57.38, 3k had an
average reward of 172.05 and standard deviation of 50.60, and 1k had an average reward of 140.47
and standard deviation of 76.11.

6 Discussion

In this paper, we show that providing human demonstrations early in world model training results in
significant speed-up and reliability improvements for two sparse reward tasks. In PinPad5, Dreamer
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starts learning around 400k steps which corresponds to nine hours on consumer hardware, while
WMHD-Dreamer begins to learn at around 60k steps which is less than two hours of training. By
introducing nine to eighteen minutes of human interaction, seven hours of training time are saved.
Similarly, in MemoryMaze WMHD-Dreamer makes significant learning progress in the first 75k
environment steps (less than three hours), while pure Dreamer needs 400k steps (sixteen hours) to
approach the same levels of performance.

MemoryMaze performance exhibits more variance within the training window than PinPad5. This is
partially due to the more random nature of the environment (e.g. some maze configurations provide
easy access to all the hemispheres). In addition, MemoryMaze is an exploration and memory task
where reward is attainable with less long-term precision than is required for PinPad5, so the reduced
performance is in line with our expectation that the world model will benefit more from human in
strongly compositional tasks. MemoryMaze still sees a 400% speedup within the training window
because the human demonstrations contain important information for attaining sparse reward, e.g.
that the border of the observation is the same color as the target hemisphere.

There are several possible explanations for WMHD-Dreamer’s strong results. First, in sparse reward
tasks, human demonstrations produce trajectories that are more spread out across the observation
space than the world model would otherwise experience until much later in training. Each state on
these trajectories becomes the initial state of an imagined trajectory for the actor-critic’s on-policy
learning. As a result, most training on sampled human demonstration is done along trajectories
that lead to sparse rewards (see A.2 for a graphical depiction). This biases the world model repre-
sentations towards accurately representing promising sub-trajectories, and forces dense exploration
along, fruitful trajectories.

Training a world model in this way is also resilient to imperfect human demonstrations. Other
policy shaping methods incur a temporal penalty for pushing an agent’s policy towards useless
or counterproductive human behavior, but our effect on the agent’s policy is indirect, and occurs
through the world model. Any useful information present in the trajectories can be incorporated
into the world model, and this is especially potent because the alternative to human data is data
produced by a mostly untrained or random policy. As long as the demonstrator is able to drive the
agent to its goal, it should benefit the world model’s understanding of the task.

6.1 Limitations and Future Work

This work examined the effect of human demonstrations on one world model. It is possible that
the Dreamer architecture is particularly well suited to absorb information from a limited number of
human demonstrations, and we can not claim this effect would persist if a different world model was
used. The generalizability of this approach should be tested with other performant world models,
like those used in TD-MPC (Hansen et al., 2022b) and VMAIL (Rafailov et al., 2021). In addition
we did not test our system with continuous real-time control tasks, a common domain for MBRL,
due to constraints on human response times. Follow up work could use assistive control to address
these domains.

Also, this work does not examine how performance could be further improved through the use of
interactive imitation learning. This paper claims WMHD-Dreamer is successful because it does not
attempt to estimate behavior distributions, but it does not investigate whether policy shaping would
further improve WMHD-Dreamer’s performance. Future work should investigate the effect of other
IIL techniques, like preference learning or scalar feedback, on MBRL systems.

Our primary insight is that training a state-of-the-art world model rather than directly shaping a
policy results in a substantial speed-up. This insight may have benefits for IIL more generally and
could be used incorporate human-demonstrations that understand harmful, or preferred states as
well, offering a novel way to ensure safe or customized learned behaviors. In addition, a human
observing a system in operation may notice behavioral weaknesses and take over to guide the agent
through difficult, dangerous, or just sparsely explored sections of the state-space.
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7 Conclusion

We demonstrate that a small number of human demonstrations can be leveraged by state-of-the-
art world-model based reinforcement learning systems to dramatically decrease learning time and
improve learning consistency. Our approach avoids the pitfalls of policy shaping by using human
demonstrations to influence the world model rather than the acting agent. We show this effect in
a sparse reward compositional task where we see six times faster, more consistent learning, and in
a continuous space, discrete action memory and exploration task where we see more modest, but
still significant learning improvements. This insight should be leveraged with modern interactive
imitation learning methods to expand the effect of human-in-the-loop learning.
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A Dreamer World Model

The world model learns embedded representations of the input through auto-encoding and recur-
rence. It is built from a PyTorch port (NM512, 2024) of Hafner et al. (2023) Recurrent State-Space
Model (RSSM), which maps inputs obst to stochastic output zt through a deterministic sequential
model with hidden state ht (Hafner et al., 2019; 2023). A Gated Recurrent Network (GRU) pre-
dicts the next deterministic state from the previous deterministic state, and an MLP combination
of the previous action and the previous stochastic state 5. The GRU’s prior is then MLP combined
with the encoded current observation to obtain the deterministic posterior state of the world. The
model learns a stable, long-term embedded world state in h, but can handle the stochastic nature
of complex unobservable environments by updating from the stochastic state. Agents can train on
both the deterministic and stochastic states to actualize in the real-world.

The world model can be represented by the following equations. Where ht is the deterministic
recurrent state, zt is the embedded stochastic state, xt is the encoded observation, ẑt is the predicted
stochastic state, r̂t is the predicted reward, ĉt is the predicted likelihood of the episode continuing,
and x̂t is the decoded image.

ht = fϕ(ht−1, zt−1, at−1)

zt ∼ qϕ(zt|ht, xt)

ẑt ∼ pϕ(ẑt|ht)

r̂t ∼ pϕ(r̂t|ht, zt)

ĉt ∼ pϕ(ĉt|ht, zt)

x̂t ∼ pϕ(x̂t|ht, zt)

A.1 RSSM structure

Figure 5 shows the one-step update for the RSSM. See Hafner et al. (2023) for more details.

A.2 Imagined Future Trajectory Training

Dreamer trains actor-critic agents on imagined trajectory unrolls that start from each real state-
action pair it observes. A single actor-critic is trained on extrinsic (usually environmental) reward as
well as an entropy regularizing term to encourage exploration. Figure 6 shows an example training
batch from an expert demonstration. Expert states SE

t form the basis of imagined unrolls where π
learns on-policy. Expert actions aE

t are never considered in actor-critic training.
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Figure 5: One-step RSSM with image observation encoder and reward, likelihood of continuation,
and observation decoders.

Figure 6: One-step RSSM with image observation encoder and reward, likelihood of continuation,
and observation decoders.

B Hyperparameters

Table 2 shows the hyperparameters used to train WMHD-Dreamer and Dreamer.
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Hyperparameter Value
World Learning Rate 1e-4
Actor Learning Rate 3e-4
Critic Learning Rate 3e-4
Train Ratio 128
GRU Recurrent Units 1024
CNN Multiplier 32
Dense Hidden Units 512
MLP Layers 4
Human Interaction Period (env steps) 1000

Table 2: Dreamer hyper-parameters
Hyperparameter Value
Actor Learning Rate 3e-4
Action Std Decay Rate 0.05
Min Action Std 0.1
Critic Learning Rate 1e-3
Gamma 0.99
Epsilon Clip 0.2

Table 3: PPO hyper-parameters

Table 3 shows the Proximal Policy Optimization Schulman et al. (2017a) hyperparameters used to
train the baseline approach.

Hyperparameter Value
discount factor 0.995
learning rate 1× 10−3

optimizer Adam
batch size 256
action distribution categorical with 4 bins
model architecture 2 Conv layers followed by 2 linear layers

Table 4: Behavior Cloning Model hyper-parameters
Table 4 shows the Behavior Cloning hyperparameters used to train the baseline approach. The
behavior cloning model was trained using 6000 human demonstrations, and the model achieved a
test accuracy of 65%. The train-validation-test split was 80-10-10.


