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ABSTRACT
To expedite the development process of interactive reinforcement
learning (IntRL) algorithms, prior work often uses perfect oracles
as simulated human teachers to furnish feedback signals. These
oracles typically derive from ground-truth knowledge or optimal
policies, providing dense and error-free feedback to a robot learner
without delay. However, this machine-like feedback behavior fails
to accurately represent the diverse patterns observed in human
feedback, which may lead to unstable or unexpected algorithm per-
formance in real-world human-robot interaction. To alleviate this
limitation of oracles in oversimplifying user behavior, we propose
a method for modeling variation in human feedback that can be
applied to a standard oracle. We present a model with 5 dimen-
sions of feedback variation identified in prior work. This model
enables the modification of feedback outputs from perfect oracles
to introduce more human-like features. We demonstrate how each
model attribute can impact on the learning performance of an In-
tRL algorithm through a simulation experiment. We also conduct
a proof-of-concept study to illustrate how our model can be pop-
ulated from people in two ways. The modeling results intuitively
present the feedback variation among participants and help to ex-
plain the mismatch between oracles and human teachers. Overall,
our method is a promising step towards refining simulated oracles
by incorporating insights from real users.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing; • Computing methodologies→ Modeling and sim-
ulation.
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Figure 1: We propose a 5-dimensional model, which synthe-
sizes the most representative feedback variation identified
in the prior research, to categorize the gap between oracles
and human teachers. The model can integrate with oracle
feedback to produce modified feedback with human-like fea-
tures and can be generated by working with participants.

1 INTRODUCTION
In human-centered robotics research, Interactive Reinforcement
Learning (IntRL) is a commonly-used technique that enables effi-
cient learning for intelligent robots by using both environmental
observations and feedback from a human instructor. To quickly
evaluate the design of IntRL algorithms and expedite the devel-
opment process, researchers often use oracles, typically perfect
oracles, to provide simulated feedback. These perfect oracles are
generated from optimal policies or ground truth, delivering dense,
instantaneous, and error-free feedback tailored to maximize the
benefits for a robot learner.

However, this approach falls short in accuratelymodeling the het-
erogeneous feedback patterns exhibited by people. Prior work has
shown that human teachers often respond to a robot in a delayed,
stochastic and unreliable way [1], and can give different feedback
in response to the same observation because of their unique person-
alities, preferences and experience [2]. Therefore, over-relying on
perfect oracles may result in algorithm performance degradation
or even failures during the transition from simulation to real-world
environments, especially when perfect oracles are used in place of
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user studies; without evaluation with real users, we do not know if
these algorithms will be robust to common sources of variation in
human feedback.

In this paper, we aim to characterize the feedback disparities
among real participants, and convey these variations to oracles
(Fig. 1). This allows researchers to continue using oracles for rapid
iteration in algorithm development, while ensuring that algorithms
developed in this way are still valid in real-world deployment. To
achieve this, we first formally examine the use of oracles in both
the state-of-the-art and foundational interactive robot learning
research. This is to gain a deeper understanding of the notable
disparities that exist between simulated oracles and human instruc-
tors, particularly in terms of their feedback behavior. Building upon
these insights and results from the literature outside of robotics,
we propose a 5-dimensional model that consolidates five represen-
tative feedback variations: frequency, delay, strictness, bias, and
accuracy. By mathematically defining each attribute, our model can
be integrated with the output of a perfect oracle, augmenting the
oracle with more human-like features. We demonstrate that the
5 dimensions of variation can influence learning in a simulation
experiment. Lastly, we present a proof-of-concept user study to
show that the model can be populated from interaction with users
in two ways: both by extracting from real feedback data and by
directly asking users to set model parameters that align the oracle’s
behavior more closely with their own.

The major contributions of this paper are:
(1) We conduct a literature review of the use of oracles in founda-

tional IntRL papers and in cutting-edge robot learning publications
over the last 3 years of 3 premier venues (HRI, CoRL, RSS), identi-
fying the common sources of feedback discrepancies;

(2) To our knowledge, we are the first to synthesize multiple feed-
back dynamics into a unified model and mathematically formulate
each dynamic in the context of binary feedback;

(3) We apply our model to modify the output of a perfect oracle,
and explore the influence of modified feedback on a classic IntRL
framework (Q-learning+TAMER) in an OpenAI Gym environment.
The results offer valuable insights into how changes in parameter
values for each feedback attribute affect the algorithm robustness;

(4) We introduce a mixed-methods approach in a user study to
obtain two types of our feedback model with participants: extracted
models and self-reported models. The results affirm the feasibility of
collaboratingwith users to create thesemodels and the effectiveness
of our approach in understanding feedback disparities.

2 BACKGROUND
Interactive Reinforcement Learning (IntRL), formally introduced
in [3] as a branch of Reinforcement Learning (RL), allows a robot
to interact not only with an environment but also with a human
teacher. Compared to the traditional RL paradigm, IntRL algorithms
incorporate a human-in-the-loop to obtain human prior knowledge,
and have been proven to be effective for reducing required training
time [4] and improving learning performance [5, 6]. Notably, IntRL
can be very useful for some special conditions, such as preference
learning tasks [7] and sparse-reward environments [8].

Existing IntRL algorithms typically use human feedback to aug-
ment reward functions [9–11], policies [12–14], and exploration pro-
cesses [15–17]. The feedback can be collected from either a real

participant or a simulated human (oracle). The idea of using simu-
lated oracles can be traced back to the Oz of Wizard methodology
[18] proposed by Steinfeld et al. in 2009, which aims to solve the im-
practicability of performing a large amount of user testing at every
iteration of new technology development. Later work has proven
that introducing simulated oracles is effective for shortening the
development cycle of algorithms and providing useful insights in
the early implementation stages [19, 20].

Nevertheless, researchers have also found that results with or-
acles do not accurately mirror real-world outcomes with human
users, since simulated oracles are often generated as perfect oracles,
oversimplifying the human feedback behavior [21, 22]. Individu-
als exhibit their own feedback patterns and variations in human
feedback can lead to changes of an IntRL model’s performance [23].
Although prior work has made attempts to add some human-like
elements to their oracles, such as incorporating errors [24], delay
[25] or reducing feedback frequency [26], those efforts often focus
on isolated aspects of human feedback discrepancies and prescribe
human behavior rather than validating it with actual users. As
a result, the development of robust IntRL methods adaptable to
feedback from diverse users remains an ongoing challenge.

A systematic understanding of the underlying causes behind the
disparity between oracles and people is a preliminary and essential
step to address this challenge, however, it appears to be absent
in existing work. Therefore, in the next section, we undertake a
literature review within the field of interactive robot learning to in-
vestigate how oracles are constructed and employed, and to identify
the major factors contributing to the feedback divergence.

3 USE OF ORACLES IN THE ROBOT
LEARNING LITERATURE

In this section, we delve into a more comprehensive and formal
examination of prior research, with a specific focus on the use of
oracles and the ways in which they diverge from human teachers.
The findings of this literature review help us characterize human
feedback discrepancies and motivate how we can mitigate the mis-
match between oracles and persons. We select papers exclusively
centered on robot learning from simulated and/or real human feed-
back. The form of feedback can be evaluative feedback, preference
labels, and corrective demonstrations. The papers are drawn from
two sources: 1) formal search on recent publications in premier
venues to guarantee the inclusion of state-of-the-art work; and 2)
ad-hoc search on Google Scholar to identify noteworthy examples
that may not be present in the formal search.

For the formal search, we go through the proceedings of HRI,
CoRL1 and RSS2 conferences over the last 3 years (2020-2022)3 and
we find 13 papers which satisfy our inclusion criteria. Addition-
ally, we include 5 papers from our ad-hoc search, representing the
foundational IntRL algorithms over the time period: TAMER [27],
Policy Shaping (Advise) [26], SABL [28], COACH [29], PEBBLE [30].
Together, we study where and how the authors obtained the feed-
back for robots, how they created their oracles, what assumptions

1Conference on Robot Learning
2Robotics: Science and Systems
3We additionally examined the proceedings from HRI 2023 and RSS 2023, which were
recently released at the time of our literature search.
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they made when adopting oracles to simulate human feedback,
and what challenges they encountered when working with human
participants or transitioning from simulation to real-world testing.

Figure 2 illustrates the sources of feedback employed in the se-
lected papers. Out of all 18 papers, 3 exclusively evaluate their
algorithms using simulated feedback, 5 rely on feedback only from
human teachers, and the remaining 10 papers combine feedback
from both oracles and participants. We observe that a significant
portion (73%) of the research includes oracles, highlighting their
prevalent adoption in the IntRL studies. Upon closer examination
of the design of oracles in these papers, a common pattern emerges.
In all cases, the oracles are derived from either ground truth knowl-
edge (heuristic functions) or optimal policies (fully-trained models).
Most work uses a single perfect oracle that consistently delivers
immediate and flawless feedback. However, one paper [24] adopts a
dual-oracle approach. They incorporated both a perfect oracle and
an imperfect oracle with 32.7% error rate to simulate a non-expert
human teacher.

Interestingly, among all the work examined, 11 out of 18 (61%)
papers acknowledged the discrepancies of feedback behavior be-
tween oracles and people. In each of those papers, the authors
discussed one or two differences in terms of assumptions required
for their research, challenges encountered during user studies, or
recognized limitations. Specifically, some research mentioned the
quality of human feedback does not consistently match that of
a perfect oracle, as individuals might occasionally make mistakes
[24, 31] and they may struggle with providing accurate feedback
when robot movements are too subtle to discern [32] or when peo-
ple themselves lack the necessary abilities [33]. Also, the timing
of human feedback does not match the precision of perfect or-
acles, as individuals may omit providing feedback [26, 34, 35] or
introduce delays in their feedback [27]. Furthermore, the feedback
strategies of human teachers are not homogeneous, as individu-
als harbor diverse expectations on robot performance - tolerating

Figure 2: Usage of simulated oracles and participants in the
interactive robot learning research we surveyed

Table 1: Feedback variations included in our model

Attribute Definition Papers Mentioned4

frequency how often the teacher provides
feedback

[26, 34, 35, 38–40]

delay how long the teacher needs to
react to the learner’s action

[27, 41–43]

strictness how willing the teacher is to
accept suboptimal solutions

[36, 44, 45]

bias how positive or negative the
teacher’s feedback is in general

[7, 28, 29, 46]

accuracy how well the feedback reflects
the actual performance

[24, 31, 47–49]

suboptimal robot behavior [36], biasing to only encourage favor-
able actions or penalize undesirable ones [28], or extending their
teaching objectives beyond mere task performance [30].

Although perfect oracles are commonly used, the heterogene-
ity of real participants has led researchers to realize many of the
limitations of those oracles. This prompts the question of how we
can enhance oracles to emulate human behavior more faithfully.
Based on the considerations identified in this literature review, we
formulate a model for modifying oracles. In the following sections,
we will delve into the details of our model (Section 4), and demon-
strate how it can effectively capture differences in real user feedback
and involve users in the process of creating more realistic oracles
(Section 5 and 6).

4 MODELING FEEDBACK VARIATION
In order to maintain the rapid iteration advantages offered by cur-
rent oracles while addressing their tendency to oversimplify user
behavior, one idea is to augment the oracles with feedback pat-
terns that replicate human variability. Few works have explored
the integration of imperfect oracles into simulation experiments,
introducing errors or timing-related noises to modify the output
of a traditional perfect oracle [24, 25, 37]. Using this approach,
they effectively assessed their algorithm performance before the
human-subject study and ensured the algorithm’s robustness when
deployed with non-expert participants. Inspired by the success of
this oracle modification concept and with the goal of incorporating
multiple representative human feedback variations, we introduce
a model that categorizes 5 dimensions of feedback dynamics. Our
model empowers us to adjust the behavior of a perfect oracle with-
out the need for substantial recreation efforts.

Next, we will explain how we select our model attributes (Sec-
tion 4.1), how our model can conceptually capture variation in
human feedback and modify oracle feedback (Section 4.2), how the
altered feedback can impact the robustness of IntRL algorithms
(Section 4.3), and how we can obtain model parameters from and
with participants (Section 5).

4.1 Model Attributes
We break down primary sources of human feedback variability
identified in our literature review into 5 more detailed behavioral

4This includes the robot learning papers within our literature review as well as some
machine learning and behavioral psychology papers outside of robotics.
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features, and we integrate them as our model parameters (see Table
1). Frequency and delay characterize the timing of the feedback,
while strictness and bias describe the teaching strategies employed
by human teachers. Furthermore, accuracy reflects the quality of
human feedback, indicating the presence of errors or misjudgments.
These attributes collectively represent the prevalent feedback dis-
crepancies observed in human teachers. They are grounded in
human-robot interaction research and are closely associated with
the development of IntRL algorithms. Most importantly, they are
straightforward for us to explain and intuitive for non-expert par-
ticipants to understand, since we hope to collect values of these
attributes directly from participants themselves.

In our case, we use the model to study discrepancies in binary
feedback (e.g. +1 for desirable robot actions, -1 for undesirable ones),
as binary feedback is commonly used for interactive robot learning
and is relatively simple to understand compared to other feedback
types. However, our model is not limited to binary feedback; it can
be extended to other feedback types based on the requirements of
the specific learning problem.

4.2 Mathematical Formulation
We mathematically define each model attribute such that they can
be used to construct modified oracles and so variation in human
feedback can be categorized and described. Here, we introduce the
formulation used in our work.

Notation. We model the learning environment as two sepa-
rate processes: a sequence of robot actions parameterized by 𝑖 ∈
(0, · · · , 𝑁 − 1), and a sequence of feedback instances parameterized
by 𝑗 ∈ (0, · · · , 𝑀 − 1). The robot in state 𝑥𝑖 performs action 𝑎𝑖
starting at time 𝑡𝑖 and finishing after a duration 𝑑𝑖 ; a delay between
actions requires that 𝑡𝑖 + 𝑑𝑖 < 𝑡𝑖+1. Separately, the teacher provides
feedback 𝜙 𝑗 ∈ {−1, +1} at time 𝜏 𝑗 . To correlate feedback 𝜙 with
actions 𝑎, we define the net feedback for an action 𝑓𝑖 as the majority
vote over all feedback given by the teacher corresponding to action
𝑎𝑖 . Correlated feedback are those whose time 𝜏 𝑗 falls between 𝑡𝑖 ,
the beginning of action 𝑎𝑖 , and 𝑡𝑖 + 𝑑𝑖 + 1, one second past the end
of action 𝑎𝑖 ; this buffer incorporates delayed responses. The net
feedback 𝑓𝑖 ∈ {−1, 0, +1} is −1 if there was more negative feedback
than positive; +1 if there was more positive feedback than negative;
and 0 if there was no feedback or there was an equal amount of
positive and negative feedback provided.

Formulation. Frequency is calculated by the average amount of
feedback assigned to per action:

Frequency =
#(𝑓𝑖 ≠ 0)

𝑁

Delay is the time between the teacher observing an action and
providing feedback. We estimate this as the difference between
each feedback time and the start time of the most recent action:

Delay𝑗 = 𝜏 𝑗 − max
𝑖, 𝑡𝑖<𝜏 𝑗

𝑡𝑖

The total delay is found by taking the mean over all feedback delays.
We adapt this to simulation by delaying oracle feedback for a set
number of time steps. We note that this definition assumes that
the feedback given by the teacher corresponds only to the most
recent action, which may not always be the case. However, in the
user study, we intend to know people’s self-awareness of their

own delay, which is more naturally measured in time since the
most recent action. Furthermore, the robot used in our study has
a relatively long action execution time (1.2 seconds), so most real
teacher feedback was not delayed longer than the action duration.

Accuracy measures how well the feedback reflects the robot’s
actual performance. For each action, we determine if the feedback
given is correct by comparing the observed action 𝑎𝑖 with the op-
timal action 𝑎𝑖 given by a fully-trained model. Feedback 𝑓𝑖 was
deemed correct if either 𝑎𝑖 = 𝑎𝑖 and 𝑓𝑖 = +1 (true positive) or
𝑎𝑖 ≠ 𝑎𝑖 and 𝑓𝑖 = −1 (true negative). We estimate the overall accu-
racy by taking the ratio of the number of actions 𝑎𝑖 that received
correct feedback 𝑓𝑖 divided by the total number of actions:

Accuracy =
1
𝑁
#(𝑓𝑖 correct)

This measures the probability that an action received correct feed-
back rather than either incorrect feedback or none at all. In other
words, we define accuracy as the probability that a person or a
modified oracle gives feedback consistent with a perfect oracle for
each provided feedback.

Strictness is measured by computing the normalized ranking of
the observed action 𝑎𝑖 among all possible actions that could have
been performed in state 𝑥𝑖 ; this is possible since we assume the
action set 𝐴 is discrete. We assign the rank 𝑟𝑖 = 1 if 𝑎𝑖 = 𝑎𝑖 is
optimal, 𝑟𝑖 = 0 if 𝑎𝑖 is the worst action, and a value 𝑘

|𝐴 |−1 if it is the
𝑘-th from worst. We then compute strictness as:

Strictness =
1
2

(
mean
𝑖, 𝑓𝑖=+1

𝑟𝑖 + mean
𝑖, 𝑓𝑖=−1

(1 − 𝑟𝑖 )
)
,

which is the average minimum ranking that an action must meet to
warrant appropriate feedback. If the person is very strict, they will
give positive feedback only to highly ranked actions and negative
feedback otherwise, resulting in a strictness value close to 1.

Bias is measured by how much more often the user gives posi-
tive feedback than would be expected based on an optimal policy.
Specifically, we compute the difference between the fraction of
feedback that was positive and the fraction of actions that were
optimal, then bound the number between 0 and 1:

Bias =
1
2
+ 1
2

(
#(𝑓𝑖 = +1)

𝑁
− #(𝑎𝑖 = 𝑎𝑖 )

𝑁

)
If the person is biased towards giving negative feedback this value
will be close to 0. If the person is biased towards giving positive
feedback this value will be close to 1. When modifying oracle behav-
ior, we formulate bias as the probability to skip providing negative
or positive feedback depending on if the oracle is positive-biased
or negative-biased respectively.

4.3 Effect of Model Parameters on Learning
Integrating our model with the output of a perfect oracle can pro-
duce modified feedback. In this section, we demonstrate that mod-
ified feedback can affect algorithm performance and potentially
provide insights about its robustness. To do this, we ran a simula-
tion experiment to examine the influence of model attributes on
IntRL algorithms. We choose OpenAI Gym taxi-v35 as our testing
environment. The task is to pick up and drop off a passenger in

5https://gymnasium.farama.org/environments/toy_text/taxi
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(a) frequency (b) delay (c) strictness

(d) bias (e) accuracy

Figure 3: Performance of Q-TAMER agent with different modified oracles, grouped by our model attributes. The red line in
each subfigure denotes the learning curve of the agent with a perfect oracle (PO).

a grid-world map. We use Q learning + TAMER [47] as our IntRL
algorithm because of TAMER’s popularity and its capability to deal
with feedback delay.We use a fully trained vanilla Q-learningmodel
as our perfect oracle, which achieves the best average reward from
the most recent 100 episodes to be 8.98.

Using the techniques outlined in Section 4.2, we modify the or-
acle to provide imperfect feedback to the learning agent. While
real-world feedback variations often arise from a combination of
feedback attributes, this section studies the impact of individual
attributes on algorithm performance. Thus, we vary only one at-
tribute per trial, keeping the other attributes fixed to match the
settings of the perfect oracle. For each feedback attribute value, we
repeat the training process 5 times, with 2000 episodes each time.

Figure 3 illustrates the learning curves of the Q-TAMER agent
grouped by feedback attributes. We found that frequency, delay and
accuracy significantly affect the learning speed. Specifically, lower
frequency, longer delay, and lower accuracy tend to result in slower
improvement on the average reward. Changing feedback strictness
results in a large disparity in learning outcomes between the perfect
oracle and the modified ones, where the agent trained with a per-
fect oracle, which only provides positive feedback when the robot’s
action is also the best suggested by the oracle, performed signifi-
cantly better than others. As the oracle becomes less strict and can
accept actions that rank lower, the agent’s performance deteriorates
and eventually becomes unable to learn the task. Changing bias
had surprisingly little influence on the agent’s performance: only

a completely positive-biased oracle (b=1) significantly hindered
learning. We suspect this is due to the relatively low-dimensional
discrete state space and large amount of allotted time for training.
We note that early on in learning, within the first 250 episodes,
bias had a much more varied effect on performance. In summary,
each feedback attribute had an effect on learning performance in
isolation, an effect we expect would be increased when multiple
attributes are not consistent with a perfect oracle (as in the case
with a human teacher). This suggests that truly robust algorithms
need to be tested and developed with models that capture the ways
human users vary in terms of these feedback attributes.

5 OBTAINING FEEDBACK VARIATION
MODEL: A PROOF-OF-CONCEPT STUDY

In this section, we present a proof-of-concept study to illustrate the
use of our model in capturing feedback disparities from participants.
This study aims to shed light on three primary aspects: firstly, the
variation in actual human feedback in relation to the parameters
defined in our model; secondly, the divergent perceptions individu-
als hold about their feedback behavior when compared to a perfect
oracle; and thirdly, the usability of our model for participants to
tailor a perfect oracle to replicate their own feedback behavior.

5.1 Experiment Setup
5.1.1 Environment. For the study, we implemented a robot catch-
ing environment. The environment includes a Kinova Gen2 arm
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holding a plastic cup and a Sphero BOLT robot remaining in place
(Fig. 4a). The goal for the arm is to learn how to catch the Sphero
(i.e. put the cup down over the Sphero). The arm knows if Sphero
is caught based on data from Sphero’s ambient light sensor. When
the arm catches the Sphero or exceeds the maximum number of
allotted time steps, an episode ends and the arm resets to a starting
position. We model the environment as a Markov Decision Pro-
cess (MDP) with action space 𝐴, state space 𝑆 , transition function
𝑇 : (𝑆,𝐴) → 𝑆 , and reward function 𝑅.𝐴 consists of 5 actions: catch-
ing (putting the cup down), moving forward, moving backward,
moving left, and moving right. 𝑆 is made up of the arm end effector
position (𝑝𝑥 , 𝑝𝑦 ), and distance between the end effector and Sphero
(𝑑𝑥 , 𝑑𝑦 ). The robot receives +100 reward if it successfully catches
the Sphero and -100 reward for an unsuccessful catch attempt. The
arm gets -1 reward after each step. We generated a perfect oracle
for this environment which was subsequently integrated into our
interactive system.

5.1.2 Oracle Modification GUI. Based on the feedback parameteri-
zation outlined in Section 4.2, we developed an interface that allows
participants to view and modify the behavior of a simulated oracle
as it provides feedback to a robot learner (Fig. 4b). The primary
goal of this interface is to obtain people’s perception of their feed-
back behavior (i.e. self-reported feedback model), which provides a
user-centered perspective for generating more human-like oracles.

The interface includes a window displaying oracle feedback (e.g.
the green area in Fig. 4b) and a set of slider UI elements, each of
which controls a specific attribute in our feedback variation model.
The values set through the sliders influence the visualization of the
oracle feedback. By moving the sliders, participants can change the
oracle’s feedback-giving behavior to match their own self-perceived
feedback-giving behavior. While users interact with the GUI, the
robot performs the task repeatedly so that participants can compare
the displayed feedback label with the real robot movements in real
time and the current parameter settings.

To generate the online feedback display, we first trained a Q-
learning agent on our robot catching environment, which achieves
90% catching rate over 30 consecutive episodes within 40 time steps.
Then, feedback outputs of the fully-trained agent are modified in
real time according to the parameter values specified in the GUI.
The initial values of feedback attribute sliders are set to match a
perfect oracle. Also, we set the minimum value of the frequency

(a) (b)

Figure 4: (a) Environment (b) Oracle Modification GUI

slider to be one feedback per action (1.2 second time gap between
two actions, except the catching action, which takes longer than
the other actions), because this is a common assumption when
researchers use simulated oracles for IntRL algorithms.

5.2 Procedure
We conducted a within-subjects study and each experiment lasted
∼1.5 hours. Each participant signed an informed consent form to
confirm their eligibility (fluent English speaker, a United States resi-
dent, and at least 18 years old) and their permission to use recording
devices and automatic transcription service. Participants continued
to complete a brief survey collecting their demographics, technol-
ogy background and previous robot experience. Next, participants
went through the following 4 sessions in order:

Understanding teaching styles. Participants were asked to fill
out the authoritative teaching questionnaire [50] to assess their
general teaching styles. We then asked open-ended questions to
knowwhether people would interact differentlywith a robot learner
compared to a human student, and to understand their attitudes to-
wards robots in general, including any positive, negative or neutral
perceptions. This session helps us to identify high-level patterns
that may relate to a teacher’s feedback behavior.

Collecting human feedback. Participants were given a con-
troller to provide binary feedback to the robot based on its perfor-
mance, where they pressed "L1" for positive feedback and "R1" for
negative feedback. Each participant had 10 minutes to get familiar
with the experiment setup. Then, they evaluated 10 trials of the
task (each made up of one of five recorded trajectories) for a total
of 20 minutes of giving binary feedback. This provides insights into
how each teacher actually provides feedback.

Modifying oracle feedback. We then proceeded to collect peo-
ple’s perception of their own feedback. Using our oracle modifica-
tion GUI described in Section 5.1, participants were able to adjust
the oracle’s behavior. While observing the robot movements, they
were encouraged to make the oracle behave in a manner similar to
how they had given feedback in the last session. Participants could
continue to modify oracle behavior until they were satisfied, and
we recorded their final settings. This session allows us to analyze
differences between a user’s self-reported feedback behavior and
their actual feedback behavior.

Reflecting. We conducted a retrospective interview to gather
more in-depth information on their experience in the prior sessions.
We asked open-ended questions related to their feedback strategy,
such as how they decided when to give positive or negative feed-
back, and their thoughts when modifying the oracle, such as how
they perceived themselves and quantified each feedback attribute.
We also asked for their opinions about the study interface design.

6 RESULTS
6.1 Participants
The study was approved by the university Institutional Review
Board. We recruited 24 participants (16 females, 8 males; aged 18-34)
from the campus, and they were compensated $35 for participating
in the study. 10 out of 24 participants were from non-STEM majors.
95% of the participants had no prior experience with robots or only
little experience with non-industrial robots (e.g. vacuum robots).
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Two participants were excluded for not following study instructions.
We used the data from the remaining 22 participants for analysis.

6.2 Modeling Results & Analysis
6.2.1 User’s feedback differs from a perfect oracle, varying among
individuals. To analyze feedback variations across people, for each
participant, we used their feedback data to extract a model of their
actual feedback, following the approach mentioned in Section 4.2.

Figure 5(a) visualizes the extracted values from each participant,
grouped by model parameters. The results clearly illustrate that
people do not behave like a perfect oracle in general. 51% of partic-
ipants did not give feedback to every action, highlighting the high
likelihood of human teachers giving less frequent feedback than
oracles. None of the participants had zero delay: they required time
to process the robot’s movements before responding. The accuracy
data reveals that the human feedback did not provide the same
quality as the perfect oracle, likely because people had their own
teaching criteria and objectives.

Moreover, we found the parameters reflecting the feedback strate-
gies (strictness, bias) exhibited less variation across people than the

(a) Extracted feedback attribute values

(b) Self-reported feedback attribute values

Figure 5: Extracted and self-reported feedback attribute val-
ues. The size of each blob represents the number of partici-
pants who chose that value (within 0.01). The black vertical
line indicates the setting of a perfect oracle.

parameters associated with the timing and quality of feedback (fre-
quency, delay, accuracy). Specifically, 90% of participants displayed
a slight positive bias. Also, participants generally appeared to be
more lenient than a perfect oracle, with a notable concentration in
the 50%-70% strictness range. This could be attributed to the fact
that, unlike oracles, individuals often recognize multiple ways to
solve a given task and may take into account social factors such as
trying to be kind to the robot [51].

6.2.2 Users’ perception of their feedback also differs from a perfect
oracle, and varies among individuals. Figure 5(b) shows the parame-
ter values participants selected for generating oracles that mimic
their own feedback behavior. We noticed a unimodal distribution
for frequency, delay and accuracy. Specifically, 13 out of 22 partici-
pants chose the lowest frequency value, indicating a single feedback
signal was given per action. While this aligns with a perfect ora-
cle, this was also the minimum frequency value participants could
choose due to the system design. As five participants mentioned
during the post-study interview, they might have preferred an even
lower value if it were available. Like with frequency, the data from
delay and accuracy were heavily skewed. 7 participants believed
they had very low delay (≤ 0.01s) and 8 perceived themselves to
have very high accuracy (≥ 0.99). This demonstrates that people
perceive their feedback behavior to be somewhat similar to that of
a perfect oracle in terms of delay and feedback, albeit not identical.

Furthermore, we observed a bimodal distribution of strategy-
related attribute values. Participants predominantly perceived them-
selves as either balanced teachers, providing a mix of positive and
negative feedback, or as reward-focused teachers, offering more
positive feedback. They also saw themselves as somewhat strict
but less so than a perfect oracle, with values centering around 55%
and 75% strictness. It is worth noting that this parameter may be
task-dependent. In our case, participants could evaluate robot per-
formance by observing the distance between the cup and Sphero,
making it quite intuitive for them to judge whether an action was
desirable or not.

6.2.3 Comparison between the extractedmodel and the self-perceived
model. To examine how well participants parameterized their feed-
back behavior, we compared the parameter values of their actual
feedback model (Fig. 5a) with their self-reported ones (Fig. 5b). To
control for slight differences when applying our feedback model
for oracle modification and attribute extraction, we adopted Spear-
man’s correlation test rather than doing a direct comparison. We
did not run the test on frequency data because some participants
chose the minimum frequency but perceived their frequency lower
than the minimum value they can report. We found participants
were able to estimate their bias well, as the extracted bias val-
ues and the reported ones had a significant positive correlation
(𝜌 = 0.634, 𝑝 = .002), but we did not observe statistically significant
results for the other attributes (delay: 𝜌 = −0.154, 𝑝 = 0.494; strict-
ness: 𝜌 = −0.011, 𝑝 = 0.962; accuracy: 𝜌 = 0.332, 𝑝 = 0.131). The
result indicates that while participants were aware of the relation-
ship between feedback attributes and their behavior, they were not
always precise in quantifying them.

Our post-study data further explains this phenomenon. Partic-
ipants were requested to list the feedback attributes they found
intuitive to comprehend and those they could conveniently adjust
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Figure 6: The number of participants who identified each
attribute as easy to understand (“Understandable”) or easy
to adjust (“Adjustable”). There were 22 participants total.

using the oracle modification GUI. We tallied the number of partici-
pants who identified each attribute as easy to understand or adjust
and present the results in Figure 6. We found that while all feedback
attributes were generally intuitive for participants to understand,
participants were not always able to report them precisely. Specif-
ically, they found it a little bit harder to adjust strategy-related
attributes (bias and strictness) than other attributes. This may be
because people are familiar with conceptually describing their strat-
egy but are less familiar with parameterizing it (e.g., P8: “I think I
am positive-biased but did not pay attention to how biased I am when
giving feedback” ). This may also stem from the complex and evolv-
ing strategies that some participants were trying to communicate
through the model (e.g, P6: “Initially I would tolerate wrong catch
actions and allow the robot to explore, but then [when the robot can
catch better] I gave more bad feedback to push it to catch faster” ).

7 DISCUSSION & CONCLUSION
In this paper, we propose a five-dimensional feedback model that
can be used to modify the output of a “perfect” oracle to better
reflect common dimensions of variation in human feedback. Our
approach provides a means to better describe the robustness of In-
tRL algorithms when exposed to human-like feedback. The findings
in Section 4.3 demonstrate that varying feedback along our model
attributes affects learning performance. Those results can be very
helpful for rapid prototyping of more robust algorithms.

Our study verifies that our model can be populated from users
through two ways: by extracting parameters from actual user feed-
back, and by having users set the values directly. Both methods
enable algorithm designers to take into account the perspectives
and abilities of real-world users, even in the early stages of algo-
rithm development where repeated user studies are impractical.
The combination of these two methods also offers valuable insights
into the origins of the gap between oracles and human instruc-
tors. For example, when both the extracted and self-reported values
of a model parameter deviate significantly from the settings of a
perfect oracle, this implies the fundamental dissimilarity between
people’s conceptions of teaching robots and the design principles
underpinning perfect oracles for improving robot learning.

The analysis performed in Section 6 shows substantial individ-
ual variation in feedback behavior, and that users give feedback
that does not exactly match the parameters of a perfect oracle.

Users’ self-reported feedback also does not exactly match their ex-
tracted behavior. While precise quantification is difficult for users,
we expect that interacting with users to populate the model can
allow them to use the model to communicate how they think of
their teaching and what they feel was important about their teach-
ing strategies. For example, how users set the accuracy parameter
might be used to understand self-efficacy in teaching, and settings
of the bias and strictness parameters may reveal differences in
teachers’ strategies between scenarios (e.g., a school setting vs. a in-
dustry setting) or between cultures (e.g., the US vs. Japan). Though
further research is needed, our method has the potential to sup-
port communication between researchers and users about teaching
styles/strategies, and assists researchers to be explicit about the
assumptions they make when modeling human teaching.

Limitations & Future Work. Our work mainly investigates
discrepancies of binary evaluative feedback. Given that different
ways to interact with robots can result in different human teaching
behavior [52, 53], we recognize our study results may not generalize
to other feedback types, such as natural language feedback. Addi-
tionally, we only focus on modeling feedback discrepancies among
individuals not the instabilities within an individual’s behavior. As
we found in the user study, people might change their feedback
patterns over time to adapt to robot learning performance. Future
work may explore how to incorporate this internal inconsistency
to our existing model, such that the refined model can increase the
similarity between simulated oracles and human teachers, leading
to the development of more robust IntRL algorithms. Finally, while
we are able to show that the parameters of our model have an effect
on learning, it is outside the scope of this work to develop novel
algorithms that optimize performance relative to the model and
verify whether the algorithm results in improved performance with
human teachers, especially non-experts. Our hope is that this work
spurs future efforts in such a direction; with a growing interest in
human-in-the-loop learning methods, ensuring that such methods
are robust to real user behavior is critical.

Conclusion.This paper introduces a novel user-engagedmethod-
ology for modeling variation in human feedback. We consolidate
five common feedback discrepancies identified in previous work
into a unified model and define mathematical formulations for each
model attribute. With the help of those formulations, we success-
fully derive the model from both on-the-fly human feedback data
and participants’ self-perception of their feedback behavior. Our
modeling results intuitively describe the gap between oracles and
individuals, and help to explain the underlying causes of this gap.
Rather than replacing human teachers with simulated oracles or
relying solely on human studies for algorithm development, our
methodology offers a promising path towards enhancing simulated
oracles by integrating insights from real user behavior, contributing
to the development of robust IntRL algorithms.
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