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ABSTRACT
Reinforcement Learning (RL) is an effective method for robots

to learn tasks. However, in typical RL, end-users have little to no
control over how the robot does the task after the robot has been
deployed. To address this, we introduce the idea of online behavior
modification, a paradigm in which users have control over behavior
features of a robot in real-time as it autonomously completes a task
using an RL-trained policy. To show the value of this user-centered
formulation for human-robot interaction, we present a behavior-
diversity–based algorithm, Adjustable Control Of RL Dynamics
(ACORD), and demonstrate its applicability to online behavior mod-
ification in simulation and a user study. In the study (n=23), users
adjust the style of paintings as a robot traces a shape autonomously.
We compare ACORD to RL and Shared Autonomy (SA), and show
ACORD affords user-preferred levels of control and expression,
comparable to SA, but with the potential for autonomous execution
and robustness of RL. The code for this paper is available at anon.url
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Figure 1: A participant using ACORD to adjust the style of a
painting as the robot traces a heart autonomously.

1 INTRODUCTION
Real-world robots must complete tasks well and meet the needs

of users. In many cases, a robot is optimized for only one of these.
For instance, an industrial assembly line robot is programmed to
perform a very specific task in a very specific way, typically in an
isolated environment, and thus requires relatively little supervision
from a person. Such a robot may have learned to complete the
task optimally through Reinforcement Learning (RL). However, this
“one policy fits all" approach is unlikely to work when robots are
working closely with humans. There are many cases where users
may wish to have a robot that can autonomously perform a task
while allowing for control over some dimensions of the robot’s
behavior. For example, a user may want a dishwashing robot to
move more slowly when cleaning their favorite mug or an assistive
robot to use less force when helping with dressing. While an RL-
based policy may be successful at completing the task, it may not
suit the user’s in-the-moment user needs for how that task should
be completed.

In many situations, there is a need to facilitate interactions that
give users this control over the style of task completion without
burdening the user with potentially-lengthy human-in-the-loop
teaching [13, 55]. Some existing methods augment a typical RL pol-
icy, but these methods have not been adapted for or validated with
real users. Existing methods include goal-conditioned RL (GCRL)

https://doi.org/10.1145/3610977.3634947
https://doi.org/10.1145/3610977.3634947
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610977.3634947


HRI ’24, March 11–14, 2024, Boulder, CO, USA Isaac Sheidlower, Mavis Murdock, Emma Bethel, Rueben M. Aronson, and Elaine Schaertl Short

for example, in which a robot’s behavior is dictated by the parame-
terization of a goal state. Similarly, behavior diversity approaches
often parameterize a robot’s policy with a latent variable that en-
codes a skill or certain way of completing a task. These approaches
are robot-centered approaches which do not explicitly allow user
control over the resulting policies. We believe these approaches can
be reformulated in a user-centered way to give users control over a
robot’s behavior as it completes a task. To enable close user-robot
collaboration, we propose and study an approach that gives users
direct control over these latent variables to adjust a robot’s behavior
to their liking.

In this paper, we present online behavior modification, a for-
mulation that combines fully autonomous task completion with
user-controlled behavior styles. This formulation is compatible
with state-of-the-art methods for learning a task offline, such as
RL, GCRL, and quality-diversity (QD), while making explicit a de-
gree of online user control. We then present Adjustable Control
Of RL Dynamics (ACORD), a user-centered, diversity-based algo-
rithm which serves as a proof of concept for this formulation. We
deploy ACORD in a user study to demonstrate its potential in a
user-centered interaction that does not sacrifice task completion.
Our contributions include:

(1) We propose the online behavior modification formulation,
which describes an interaction where a robot autonomously
completes a task while a user controls how it does so.

(2) We present ACORD, a diversity-based algorithm designed
for online behavior modification. ACORD grants users con-
tinuous control over pre-specified behavioral features of the
robot while ensuring autonomous task completion.

(3) We validate ACORD in an in-person study with non-expert
users (n=23) in a collaborative painting task where users
adjust the style of painting using ACORD, fully-autonomous
RL, and a modified version of Shared Autonomy (SA). We
find that ACORD is rated by users as affording the same
high level of control as SA (82% agree with ACORD giving
control, 73% with SA, versus 30% agreeing with RL giving
control), while maintaining better overall task performance
(BF=11.67 in our measure of consistency). Furthermore, we
find users strongly prefer interacting with ACORD over the
RL baseline (e.g., 83% preffered ACORD, BF=17.16).

2 RELATEDWORK
Users like to have control over robots. Whether it is via teleopera-

tion [14, 24, 25, 41, 54], being able to dictate which actions the robot
should not take [2, 9, 52], or having a degree of direct control over
a collaborative algorithm [20, 38, 56, 57]. A theme of these works
is that allowing users to influence robot behavior allows for more
expressivity and robustness than a single policy may represent. In
fact, RL is also moving towards more expressive and capable poli-
cies. GCRL for example enables a policy to perform different tasks
depending on how a goal state is selected [12, 17, 29, 32]. Skill learn-
ing and diversity-based approaches [16, 31, 34], such as Quality-
Diversity (QD) [15, 18, 43, 48, 49], allow a robot to autonomously
learn meaningfully variations in its behavior. Algorithmically simi-
lar to our work, [28, 40] use diversity-based approaches to increase
an agent’s robustness to its environment, while we propose using

similar techniques to give users more control over a robot’s behav-
ior. We also highlight that most previous robot-centered approaches
have not been validated with users, a critical step to ensure that
these methods serve the needs of users.

While pure teleoperation maximizes user control, our work is
applicable in tasks where direct user control is impractical or im-
possible. A more analogous method, used as a baseline in this work,
is Shared Autonomy (SA), which grants a user direct control over
a robot given that it has a degree of autonomy. The primary goal
in SA is for a robot to infer a user’s intended goal or skill based on
some input [20, 23, 35, 42, 46]. Although RL has also been used to
enhance SA [18, 45], it has not been used to adjust how the robot
completes its task given the target task is known. There is a need
for approaches such as ours that do just that.

Human-in-the-loop learning has offered approaches to guiding
robot behavior via reward shaping [7, 11, 37, 44], ensuring various
safety constraints are met [2, 30, 52], or, most closely related to
how a robot does a task, via queries about behavior features [6–8].
Approaches such as Interactive RL emphasize teaching a robot in
real-time as it adapts to the teacher’s feedback [5, 26, 47]. While
these approaches are effective at allowing users to alter robot behav-
ior, they often require both lengthy teaching times and retraining
when a user changes their preferences. To complement these more
time-consuming methods, there is a need for approaches such as
ours that allow users to quickly change a robot’s behavior in the
moment.

3 LEARNING POLICIES FOR ONLINE
BEHAVIOR MODIFICATION IN RL SETTINGS

To enable human-centered control over how a robot complete
its task, we propose three key properties for online behavior modifi-
cation. First, the robot must always autonomously make “task
progress" and ensure the task does not critically fail. In this con-
text, “progress” may mean “expected completion in finite time” or
“always getting closer to a goal”; formalization depends on the task.
Second, there must be a non-empty set of behavior features, each
of which has an associated behavior oversight parameter, 𝑘 , that
control the robot along the behavior feature axis. In other words,
the policy must be explicitly parameterized with a(n) observable
variable(s) that dictate an aspect of the robot’s behavior. Finally, for
each behavior feature that has a certain 𝑘 associated with it, the ad-
justment of that 𝑘 must be interpretable to a user and there must
be an accessible interface that facilitates a user to freely adjust
each 𝑘 as the robot completes its task. These properties describe an
interaction that ensures the user can have a robot that both meets
their needs and can be personalized without having to teach the
robot the task or their preferences.

In this section, we present Adjustable Control Of RL Dynamics
(ACORD), a proof-of-concept algorithm for learning a policy for
online behavior modification in continuous state and action space
robotics tasks. ACORD is a behavior-diversity–inspired algorithm
which explicitly gives users control over a robot’s behavior. We
describe how to adapt a standard RL setting to facilitate ACORD
and demonstrate it in a simulation environment.
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3.1 ACORD for Continuous Control RL-tasks
We assume a task modeled as a Markov decision process (MDP)

with states 𝑆 , actions 𝐴, a transition function 𝑇 (𝑠, 𝑎) → 𝑠′, and
a discount factor 𝛾 . To define task failure, we assume some en-
vironmental reward function 𝑅env. To this system, we introduce
behavior oversight parameters. Assume that 𝑆 = R𝑛 and define the
space of behavior oversight parameters as 𝐾 = [0, 1]𝑚,𝑚 ≤ 𝑛. Con-
sider the coordinate representation of 𝑠 = ⟨𝑠1, · · · , 𝑠𝑖 , · · · , 𝑠𝑛⟩ and
𝑘 = ⟨𝑘1, · · · , 𝑘 𝑗 , · · · , 𝑘𝑚⟩. Each coordinate of 𝑘 , 𝑘 𝑗 , controls a coor-
dinate of 𝑠 , noted 𝑠𝑖 . The set of all 𝑠𝑖 that have a 𝑘 𝑗 mapping to them
define a set of behavior goals for the robot, and the corresponding
𝑖-axes are behavior feature axes. Any 𝑠𝑖 with no corresponding 𝑘 𝑗
is a free variable whose value is not explicitly constrained by a
setting of 𝑘 . For generality, we assume the range of behavior goals
is unknown prior to learning (e.g. the max and min speed the robot
can move while completing its task is unknown). After learning, a
user can directly adjust the values of 𝑘 , thus changing the robot’s
behavior goal on the axis 𝑠𝑖 , and consequently changing its behav-
ior along that axis within a range that is learned by the algorithm,
subject to “non-failure” condition above. This representation could
be trivially extended to having 𝑘 𝑗 control multiple coordinates.

Learning a policy for ACORD entails finding a policy parameter-
ized by 𝑘 , 𝜋𝑘 , which both makes progress in the task and enforces
the behavior goals. To ensure that the learnedmapping from each𝑘 𝑗
to each 𝑠𝑖 is interpretable by a user, we propose the soft constraint
that the robot should learn a monotonic mapping from 𝑘 𝑗 to 𝑠𝑖 and
that the mapping range is as large possible without preventing the
robot from completing its task.

3.2 ACORD Algorithm
ACORD makes use of three components: a discriminator that

learns a continuous mapping from 𝑠𝑖 → 𝑘 𝑗 to generate a diversity-
inspired reward; an environment reward to define failure states and
a task progress heuristic ℎ(𝑠, 𝑎) to ensure task performance; and
a domain randomization component that ensures that the agent
learns and is robust to various different settings of 𝑘 such that 𝑘
may be adjusted in real time.

ACORD Discriminator We train a set of discriminators𝑊𝑗 to
predict 𝑘 𝑗 given 𝑠𝑖 , denoted:𝑊𝑗 (𝑠𝑖 ) ∈ [0, 1]. We parameterize the
discriminator as a neural network and train it via the novel loss
function:

𝐿(𝑊𝑗 (𝑠𝑖 ), 𝑘 𝑗 ) = 𝑀𝑆𝐸 (𝑊𝑗 (𝑠𝑖 ), 𝑘 𝑗 )+
1

|max(𝑊𝑗,𝑠𝑖∼𝐷 (𝑠𝑖 )) −min(𝑊𝑗,𝑠𝑖∼𝐷 (𝑠𝑖 )) + 𝜀 |
(1)

where𝑊𝑗,𝑠𝑖∼𝐷 refers to the discriminator output of a batch sampled
from a replay buffer 𝐷𝑊 , and 𝜖 is a small number to avoid division
by zero. This loss function enforces high prediction accuracy (via
MSE) and that the predictions cover as wide a range as possible. The
latter property is explicitly enforced by the denominator, leading to
a faster convergence to the range covered by each 𝑘 𝑗 , resulting in
more stable task behavior (see supplementary material for ablation
study).

RL Task Description and Agent We define the state space of
the RL agent to be 𝑆

⋃
𝐾 . This makes 𝑘 observable to the agent. We

will still denote any given state with 𝑠 . We design a reward function

such that the agent avoids failures, makes progress, and learns to
enforce behavior goals:

𝑅(𝑠, 𝑎) =


𝑅𝐸𝑛𝑣 (𝑠) if 𝑠 ∈ 𝐹 ∗

−𝑐 if ℎ(𝑠, 𝑎) ≤ 0
1
𝑚

∑𝑚
𝑖=1 (− log |𝑊𝑖 (𝑠𝑖 ) − 𝑘𝑖 |) else

(2)

where 𝑅𝐸𝑛𝑣 denotes the reward from the environment and 𝐹∗ is the
set of failure states, which lead to a large negative reward, ℎ(𝑠, 𝑎)
denotes a heuristic for measuring task progress, and 𝑐 is a positive
constant that punishes the agent if it fails to make task progress.
Last is the reward generated by the discriminator which ensures
that, for a given 𝑘𝑖 , the agent is acting in the part of the state
space where the discriminator can easily predict the 𝑘𝑖 value. Since
|𝑊𝑖 (𝑠𝑖 ) − 𝑘𝑖 | ∈ [0, 1), this reward is always positive and the other
conditions are always negative. This allows the reward function to
be adapted and scaled to different environments with relative ease.
Each of these terms may be scaled by a constant. We maximize this
reward via the off-policy RL algorithm SAC [21].

Domain Randomization Over K We employ domain random-
ization [36, 50] for the setting of 𝑘 during training. Every 𝑛 time
steps, we sample 𝑘𝑖 ∼ Uniform(0, 1)∀𝑘𝑖 ∈ 𝑘. The choice of 𝑛 can
be difficult as when a given 𝑘𝑖 changes, it may take several steps
for the robot to adjust its behavior accordingly. If 𝑛 is too small, the
algorithm cannot learn to enforce the value of 𝑘 over time, and if 𝑛
is too large, it cannot learn to react efficiently to a user changing
𝑘 real time. Empirically, we find in the tasks in this paper that a
reasonable choice for 𝑛 is about half the length of an episode; we
expect that this would be the case for many tasks.

Algorithm 1: ACORD
1 Initialize off-policy RL Learner Ψ
2 Initialize Discriminator(s)𝑊
3 for environment step t do
4 for every n steps do
5 𝑘 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)
6 𝑠𝑡 ∼ 𝑠𝑡 𝑒𝑛𝑣

⋃
𝑘

7 𝑎𝑡 ∼ 𝜋Ψ (𝑎𝑡 |𝑠𝑡 )
8 𝑠𝑡+1𝑒𝑛𝑣 ∼ 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
9 𝑠𝑡+1 = 𝑠𝑡+1𝑒𝑛𝑣

⋃
𝑘

10 𝑟𝑡 ∼ 𝑅(𝑠, 𝑎) [see Eq. 2]
11 𝐷Ψ ← 𝐷Ψ

⋃(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 )
12 𝐷𝑊 ← 𝐷𝑊

⋃(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 )
13 for every m steps do
14 Update Ψ via gradient descent
15 for every v steps do
16 Update all𝑊 via loss in Eq. 1

3.2.1 On Using a Heuristic Progress Function. Online behavior
modification as an interaction emphasizes that the robot can au-
tonomously complete the task by constantly making progress in
that task. There are several ways to formalize this constraint, and
online behavior modification does not necessarily require a par-
ticular one. For example, in this work we define a task progress
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Figure 2: Left: The walking agent varies its behavior in a predictable and interpretable way given changes of k. The ghost traces
from the previous six video frames show the agent’s change in speed. Right: The resulting manifold learned by ACORD in the
walker environment. The speed is robust to different hull angles.

measure ℎ(𝑠, 𝑎) and require that 𝜋𝑘 prioritize trajectories that make
ℎ(𝑠, 𝑎) non-negative; this approach is appropriate for many robot-
ics problems where there is a physical destination for the robot’s
motion (e.g., [32]). Another natural approach might be to use the
environmental reward function 𝑅env (𝑠, 𝑎) to measure task progress
or require that the trajectories following 𝜋𝑘 eventually reach a ter-
minal success state. The exact specification will depend on the task
and the formulation of the learning problem.

A heuristic progress function ℎ can ensure the robot always com-
pletes the task despite a user changing how it does so. This aligns
with our goal of giving users the most control possible over a ro-
bot’s behavior while still accomplishing the task. This is in contrast
to prior approaches that optimally solve for a trade-off between
environmental reward and diversity, as in Quality-Diversity-based
approaches [24, 25], or use a hyperparameter to dictate how each
of the two objectives are weighted [26].

3.3 ACORD in Simulation
We train ACORD in simulation to show that the learned policy

has the desired properties: it aligns pre-specified behavior features
to the values specified by 𝑘 ; it has an interpretable behavior range
over 𝑘s; and it completes the task and avoids failures robustly in
variations in 𝑘 . In a bipedal walker task [10], we specify two be-
havior oversight parameters: 𝑘1 to control the speed of the robot
along its 𝑥-axis and 𝑘2 to control the angle of its hull. Failure cases
are specified as crashing (-100 reward from the environment). We
measure task progress by setting ℎ(𝑠, 𝑎) = 𝑣𝑥 , the velocity of the
robot along the 𝑥 axis. Then, Eqn. 2 penalizes the system for moving
backwards in 𝑥 . We trained the agent to convergence prior to eval-
uation (∼2 million steps, for a discussion of algorithm efficiency see
Section 6). Figure 2, left, shows the resulting behavior by varying
both 𝑘s. By changing 𝑘 𝑗 there is a predictable change in behavior

along the specified feature axis. Figure 2, right, shows the range
over the robot’s speed for various settings of 𝑘1 given across dif-
ferent values of 𝑘2. This demonstrates that ACORD can be robust
to multiple settings of 𝑘1 given 𝑘2: varying the hull angle does not
fully constrain the agent’s ability to vary its speed. Of course, if
two features are directly in conflict with each other, such as a 𝑘𝑖
mapped to going backwards and a 𝑘 𝑗 mapped to going forwards, the
behavior of the robot may not be as expected. Lastly, over multiple
runs, the agent avoids crashing ∼ 94% of the time with variations
in many settings of 𝐾 .
4 USER STUDY

To study ACORD and online behavior modification with real
users, we designed a robot painting environment wherein users
can adjust a robot’s painting style as or before it traces a drawing.
This domain is an inherently creative activity in which a person has
styles and preferences that they wish to express. Online behavior
modification captures the idea that task completion itself is not
always the only desirable metric of a human-robot interaction, hav-
ing control over how the task is completed can also be an important
factor, as is the case with painting and other artistic tasks.

Robot Painting Task The painting task involved the robot
tracing a previously generated shape. We specify each shape as an
ordered list of waypoints in the 𝑥-𝑦 plane, (𝑝0, · · · , 𝑝𝑟 ). We formu-
late the task as an MDP where the state 𝑠 is a vector containing the
robot’s end-effector position, orientation, and velocity; the position
and orientation of a brush the robot is gripping; and the next way-
point that the robot should reach. Actions are relative Cartesian x-y
velocities. Reward is given as 𝑅(𝑠, 𝑎) = −|𝑝brush − 𝑝𝑖 |, the negative
distance between the current pose of the brush 𝑝brush and the next
waypoint 𝑝𝑖 . Episodes terminate when the robot has reached every
waypoint that makes up the shape or with failure when the arm
leaves the workspace or is in collision.
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Figure 3: Overview of the study procedure. Participants interacted with each of the three conditions (order was counterbalanced),
completing a survey after each condition.

Experimental Setup The setup (Figure 3) consisted of a Kinova
Gen3 robot arm on a table with the participant sitting next to it.
Depending on the condition, users had access to a different interface
to interact with the robot. On the table was paper with a shape
outlined in red on which the robot would paint. The participants
were told which shape they would paint: heart or house (Figure
3). These shapes contain various motions and strokes and provide
scope for participants to paint in their own style.

Painting Styles We define two different axes for the robot to
vary its painting style. One is by adjusting the height of the brush
or end-effector, thus affecting the pressure that the brush applies to
the canvas. This can result in thinner or wider strokes. The other
way is by rotating the robot’s wrist or brush. This adjusts the angle
of the brush, resulting in more varied strokes.

4.1 Conditions
We assume for all conditions that the robot knows how to per-

form the task optimally according to the MDP formulation. We fix
the painting policy across each baseline to ensure the same amount
of time is spent on each painting and that the style adjustment was
the primary difference between conditions. We compare ACORD
to two alternatives to vary the style of robot behavior: RL and SA.

Choosing Among a Discrete Set of Style-Varying RL Poli-
cies This condition gave the robot the most autonomy. Participants
selected one of six styles based on an example image before the
robot drew the shape. Each style represented a fixed value for the
pitch and height of the end-effector. The robot then painted the
shape autonomously according to that selected style. This type of
control, in which a user chooses between a set of RL policies, is
appropriate for tasks where RL control is necessary and/or avail-
able and "styles" are well defined, such as choosing a “risky” or
“risk-averse” obstacle avoidance strategy.

Shared Autonomy (SA) This condition gave the participants
the most direct control. Users were given assisted velocity control
over the height and pitch axes of the robot end-effector through a
controller. The input was augmented with a SA assistance strategy
following [22, 23], with 𝛼 = 0.5 to allow the user’s commands to

directly influence the robot position [39]. The SA assistance infers
online which of the six styles defined in the previous condition the
user is intending to achieve.

While similar to the standard goal-based SA paradigm, we note
two key differences. First, the system continuously moved along the
𝑥-𝑦 plane via the optimal policy while the user controlled the style
axes. Second, rather than considering goal states to be terminal, the
user continued to control the style axes for the whole trajectory and
could move from one goal then to another. This approach allows for
the closest comparison between ACORD and SA, but this multi-goal
formulation of SA is a direction for future research in itself.

Adjustable Control Of RLDynamicsWe trained and deployed
an ACORD agent using sim-to-real via the Gazebo simulation envi-
ronment [27]. Failure was defined as leaving a set workspace. We
defined ℎ(𝑠, 𝑎) = 𝑎 · (𝑝𝑖 −𝑝brush), the component of the action in the
direction towards the current waypoint 𝑝𝑖 . Penalizing ℎ(𝑠, 𝑎) ≤ 0,
as in Eqn. 2, penalizes actions that move away from 𝑝𝑖 .

Two 𝑘s were learned to allow for continuous control over the
painting style: one for the height, 𝑘1, and angle, 𝑘2, measured at
the brush tip rather than at the robot’s end-effector. This means
when a user moves the slider to adjust the brush’s rotation, through
𝑘1, ACORD maintains contact with the paper since 𝑘2 stays the
same. The users had access to a GUI with two sliders to control
both 𝑘s. Users adjusted the sliders, affecting the robot’s behavior
and painting style in real time.

4.2 Experimental Procedure
RecruitmentWe recruited a total of 24 participants from the

university and the surrounding area with a variety of different
backgrounds. All participants were 18 years or older. Of those par-
ticipants 15 were female and 9 were male. 13 participants were in
the age range of 18-24, 9 in the range of 25-35, 1 in the range of
35-44 and 1 in the range of 55-64. Participants reported their level
of programming expertise from 0 (none) to 10 (expert). The mean
level of programming experience was 2.9 with a standard deviation
of 2.3. Furthermore, 11 participants reported having experience
interacting with robots, and 3 of those 11 had significant expertise
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Figure 4: Participant paintings. Users were able to produce a wide range of different styles for the pre-specified shapes, including
the emergent “polka dot” style in SA (4th column from left) and widening or narrowing “strokes” using ACORD (rightmost
column, top and center).

(attending robotics conferences and events regularly). The study
lasted approximately 45 minutes and participants were compen-
sated $15. Of the 24 participants, the data from one participant was
excluded due to non-participation (ignoring the robot’s behavior
and providing only uniform feedback on all surveys). This left data
from 𝑛 = 23 participants for analysis. The study procedure was
approved by the Tufts University IRB.

Procedure Participants provided informed consent then took a
background survey. The experimenter then explained the task and
control in the conditions, including allowing participants to practice
with SA and ACORD. In each condition, participants painted the
house shape and then the heart shape, then filled out a survey
about that condition. Conditions were fully counterbalanced within
subjects. Finally, participants completed a post-study survey, were
thanked, and given compensation.

Outcome Measures The post-condition survey included NASA
TLX [1] and UTAUT [53] surveys. We adjusted the scale of all ques-
tions to a 5-item Likert-scale. We also asked two other Likert-scale
questions: I had control over the robot’s behavior and I could express
myself through the robot, and an open response question: How much
do you feel the robot’s ability to complete the task depended on your
input? The post-study survey had participants rank each condition
based on their preference, the ability to express themselves, the
perceived reliability of how well the robot traced the shape, and
which mechanism (e.g. controller or sliders) they preferred. In ad-
dition, it asked two open response questions: a request for general
comments and the question how could the interactions be improved?

We evaluated two quantitative metrics for how reliably the shape
was traced. For each painting, we calculated the coverage, or per-
centage of the red line that remained visible in the image after
the task was complete. We also calculated the consistency, or the
coverage of the red line after applying translations and rotations of
the painting to best align with the shape of the red line.

HypothesesWe expect that ACORD will give users control over
the robot’s behavior while still effectively completing the task, as
users have more direct control than RL but less than that of SA.
Thus, we expect that ACORD will be the most preferred approach
and that it will give users feelings of slightly less control as SAwhile
having similar performance to RL. This results in three hypotheses:

H1: Users will prefer to interact with ACORD over SA and RL.
H2: Users of ACORD will feel more in control of the robot than

in RL but less than in SA.
H3: RL will be objectively and subjectively the most reliable,

ACORD the second most and SA the least.

5 RESULTS
To analyze the data, we use Bayesian statistics following the in-

terpretation scheme presented in [51]: a Bayes Factor (BF) between
3 and 10 we interpret as “moderate evidence” for the alternative
hypothesis, between 10 and 30 as “strong evidence,” and 30 or above
as “very strong evidence.” To evaluate the post-study survey data,
we encoded responses as pairwise comparisons between two of the
three conditions. For each comparison, the rank was encoded as 1
if the “left” condition was preferred, -1 if the “right” condition was
preferred, and 0 if the participant ranked the two conditions equally.
To analyze this data, we used a Bayesian Wilcoxon Signed Ranked
test with a Cauchy prior distribution with 𝑟 = 1/

√
2. To analyze the

Likert scale data , we used a Bayesian Repeated Measures ANOVA.
We used a Bayesian Paired Samples T-Test to analyze the coverage
and consistency metrics.

User preferences We find strong evidence that ACORD is pre-
ferred over RL (BF=17.16) and anecdotal evidence that people prefer
SA over RL (BF=2.11). There is strong evidence that people found
ACORD more fun than RL (BF=79.87) and moderate evidence peo-
ple found SA more fun than RL (BF=5.03). These results provide
support for ACORD being preferred over RL while being no less
preferred than SA. We also find a trend towards ACORD being
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Figure 5: Responses to post-condition 5-point Likert scale questions. The darkest blue represents "strongly agree" or, in the case
of Mental Demand, "very high." The darkest red represents "strongly disagree" or, in the case of Mental Demand "very low."

Figure 6: Heatmaps depicting the consistency of each approach sorted left to right from most consistent overall to least
consistent. The heatmap consists of the participant’s paintings layered on top each other after being shifted for maximal
coverage. Areas of high coverage depict areas where many participants painted over, and vice versa for areas of low coverage.

preferred to a greater extent over RL than SA. Finally, we found
that users rated RL as much less mentally demanding than SA and
ACORD (BF=112.87 and BF=45.92 respectively), and much less
hard work (BF>10000 and BF>10000), although the previous results
suggest this was not a significant factor in user preferences. These
findings partially support H1 and directly support that ACORD
provides at least as much benefit to user experience as SA.

User Control and Expression In the post study-survey we
find strong evidence that people find ACORD and SA more ex-
pressive than RL (BF=18.40 and BF=13.65) and similarly for the
post-condition survey measure of expressiveness (BF=23.38 and
BF=40.31). Users also found a greater sense of control with ACORD
and SA (BF=6318.61 and BF=40.31). There is anecdotal evidence
that users reported more control in ACORD than SA (BF=2) and dif-
ferences between the two were often commented on in open-ended
responses. These results support the first part of H2, that users felt
more in control in ACORD than in RL, however our results suggest
that some users may have felt an even greater sense of control in
ACORD than in SA.

Quantitative Painting Analysis We find on average, across
both shapes, ACORD and SA had better coverage than RL (Bayesian
Paired Samples T-Test: BF>10000 and BF=1095.2), likely due to the
persistent offset in the RL condition caused by bristle drag of the
brush. We account for misalignment by computing the maximum

coverage found over small translations and rotations of the tem-
plate, which we refer to as consistency. As expected, RL has better
consistency than SA and ACORD in both shapes and, in general,
the normalized sum across both shapes (BF>10000). While SA has
higher consistency in the house shape (BF=1884.64), ACORD has
much higher consistency in the heart shape and a higher con-
sistency overall (BF>10000 and BF=11.67). A visualization of the
consistency results can be found in Figure 6. According to our two
reliability metrics, H3 is supported by the consistency metric and
not by the coverage metric. The coverage findings, however, show-
cased how a human in the loop can use the flexibility of added
control to compensate for execution time limitations in pre-trained
RL models.

Qualitative Results Figure 4 shows paintings from each condi-
tion that are representative of the different painting styles found
and the emergent behaviors that users demonstrated. With ACORD,
we see the emergent behavior of brush strokes, where users moved
both sliders quickly to make a specific stroke. In SA, some users
made polka dots by bringing the brush up as much as they could,
releasing the joystick, then letting the assistance bring the brush
back to the paper. This was a surprising use of SA and goes against
the task description of tracing the shape, yet gave users who fig-
ured this out a new way of expressing themselves and highlights
that users had a desire for control and creativity in the task. While
both ACORD and SA enabled this control, many users emphasized
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Figure 7: Results of the post study surveys. Users ranked
each condition based one their preference (top), perceived
expressive potential (mid), and perceived reliability (bottom).

“consistency” and “ease of use” when describing ACORD; in con-
trast, users described SA as “mentally demanding” or “too sensitive.”
Some users did not enjoy that ACORD required "shifting their eyes"
from the screen to the robot, although of course this is an issue
with the interface and not with ACORD itself. RL was criticized for
not being able to adjust the style in real time; however, multiple
users said it would be ideal for a "mass production" setting.

6 DISCUSSION
Online behavior modification describes an interaction in which

a user has control over how an otherwise autonomous robot com-
pletes a task. While prior work has offered various algorithmic
avenues to fulfill this type of user control, such as GCRL or Skill
Learning, they have been formulated in robot-centered ways and
lack validation in terms of usability and acceptance by actual users.
In contrast, online behavior modification is a user-centric formula-
tion that can leverage the benefits of these approaches to empower
users in ways that can be systematically tested and compared.

To position online behavior modification within existing human
robot interaction works, our user study compared the ACORD al-
gorithm to both a library of autonomous RL policies and a version
of SA modified for a multi-goal setting where different styles repre-
sent different goals. We validate that ACORD can be used to adjust

the style of a robots behavior and is perceived favorably by users.
Our study shows that ACORD provides high levels of perceived
control and expressiveness, as shared autonomy does, while being
easier to use. There are also key technical and theoretical differ-
ences between online behavior modification and SA. In the context
of SA, the task-level goal is unknown, and the robot, through an
interpretation of the user’s control signal, is attempting to infer
the goal of the task. In contrast, in online behavior modification,
the task-level goal is known, and the purpose is to maximize the
user’s control over how the robot autonomously completes that
task. SA also requires the user to operate directly in the robot’s
action-space defined for the task, while algorithms such as ACORD
build a separate new space for user input. In a larger system, online
behavior modification algorithms like ACORD could work with SA,
for example by using an SA system to infer where the user wants
to go, and ACORD to give the user control over how the robot gets
there. This opens up various directions for future research, both
studying and comparing different algorithms for online behavior
modification, as well as how online behavior modification may fit
into or be combined with other paradigms.

Limitations An assumption in this work is that the designers
of the system know which axes of behavior people care about for the
task. This could be resolved by working with users to understand
which behavior features they wish to adjust. Future work might
also develop a general understanding of the types of features that
users most want to adjust for a given task or types of tasks. More
work is also needed to understand how users interact with more
abstract features and more numerous behavior oversight param-
eters. While ACORD was sufficiently efficient to be deployed on
a real robot and be used by real users, the algorithm is relatively
sample-inefficient (about 3 hours of fine-tuning after training in
simulation). Future work could improve ACORD’s efficiency by
leveraging other techniques, such as hindsight and Constrained
MDPs [3, 4]. Lastly, though online behavior modification entails
the robot avoid task failures, this paradigm is currently not meant
for saftey-critical scenarios unless, potentially, combined with safe
RL methods [2, 19, 33].

Conclusion This paper introduced the online behavior mod-
ification formulation, in which a user has control over how an
otherwise-autonomous robot completes a task. Leveraging robot-
centered algorithmic approaches for varying robot behavior, we
proposed ACORD, a user-centered behavior diversity inspired algo-
rithm that explicitly allows users continuous control over behavior
features of a robot. We demonstrate ACORD’s applicability to on-
line behavior modification in simulation prior to deploying it in a
user study. Interacting using ACORD was strongly preferred over
selecting among RL policies, likely due to its creative potential and
real-time control element, while its task accuracy and ease of use
outperformed SA, in addition to being usable in tasks for which SA
is not appropriate. This work highlights how human-centered for-
mulations of robot learning can be used to enhance user experience
with robots and opens directions for future research in this area.
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